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Abstract. We review the application of effective operator formalism to the ab initio no core shell
model (NCSM). For short-range operators, such as the nucleon-nucleon potential, the unitary-
transformation method works extremely well at the two-body cluster approximation and good
results are obtained for the binding energies and excitation spectra of light nuclei (A≤ 16). However,
for long-range operators, such as the radius or the quadrupole moment, performing this unitary
transformation at the two-body cluster level, does not include the higher-order correlations needed
to renormalize these long-range operators adequately. Usually, such correlations can be obtained
either by increasing the order of the cluster approximation, or by increasing the model space. We
will discuss the difficulties of these approaches as well as alternate possible solutions for including
higher-order correlations in small model spaces.
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INTRODUCTION

In the last few years, significant advances in theoretical methods and computer power
have allowed the description of the low-lying states in light nuclei from first principles,
i.e., starting from realistic nucleon-nucleon (NN) interactions that fit the experimental
phase-shifts [1], and theoretical three-body forces [2]. The no-core shell model (NCSM)
is a particularly flexible method that allows all the A nucleons to interact and preserves
all the symmetries of the original Hamiltonian [3, 4]. The main tool is a unitary transfor-
mation [5, 6] of the Hamiltonian from the infinite space to a model space, which allows
a diagonalization in a many-body basis. In the lowest cluster approximation, the uni-
tary transformation approach works extremely well for binding energies and excitation
spectra of light (A ≤ 16) and selected medium-mass nuclei [7].

Besides spectra, other properties of the nuclear states are of interest, as they impose
a strong test on the theoretical wave functions. In particular, we concentrate on elec-
tromagnetic transitions. The same unitary transformation used to compute the effective
interaction can be used in order to obtain effective operators in the model spaces used to
diagonalize the effective Hamiltonian. We found that, in the lowest approximation, the
unitary transformation has little effect on long-range observables [8], such as quadru-
pole moments and radii. In retrospective, these results can be understood as long-range
observables “feel” effects due essentially to all A nucleons; the two-body cluster ap-
proximation, however, accounts for short-range correlations and cannot accommodate



long-range correlations.
In this paper, we shortly review the theory of effective operators in the framework of

the unitary transformation approach and discuss applications to light nuclei, as well as
possible avenues for including more higher-order correlations in small model spaces.

THEORETICAL APPROACH

For over fifty years, the state of the art method for a microscopic description of nuclear
states has been the phenomenological shell model, where on top of the single particle
states one adds a residual interaction and diagonalizes in a restricted model space, as-
suming an inert core. Work by Arima and Horie [9] and later extended by Bertsch [10]
introduced the core polarization concept into the nuclear shell model. Core polarization
is a method to induce long-range correlations in a nucleus, and its effect was an im-
proved agreement of the nuclear spectrum with the experiment. Without entering into
details concerning issues like convergence, we have to point out that, while reasonable
results have been obtained for the nuclear spectra, applications of the same many-body
techniques to other observables, such as the magnetic dipole and electric quadrupole,
never achieved the same level of success. In particular, the empirical effective charges
of 1.5e for the proton and 0.5e for the neutron have remained a puzzle for decades.

In the NCSM, we use a unitary transformation in order to include correlations left out
by the truncation of the model space. The transformed Hamiltonian

H = e−SHeS, (1)

preserves the spectrum of the initial Hamiltonian. Moreover, if the antihermitian operator
S is determined by the condition PH Q = 0, that is, the transformed Hamiltonian does
not couple the model, or P, space with the excluded, or Q, space, then the effective
interaction in the model space is energy independent. Furthermore, if one determines
the operator S so that the additional decoupling condition QH P = 0 is fulfilled, it can
be shown that the effective operators determined by the transformation

O = e−SOeS (2)

are also energy independent [5, 11]. Formally, the operator S can be written by means of
another operator ω as S = arctanh(ω −ω†), where the new operator fulfills QωP = ω .
Hence, one obtains the energy-independent effective Hamiltonian in the model space P

He f f = PH P =
P+Pω†Q√

P+ω†ω
H

P+QωP√
P+ω†ω

, (3)

and, analogously, any observable can be transformed to the P space as [5, 11]

Oe f f = POP =
P+Pω†Q√

P+ω†ω
O

P+QωP√
P+ω†ω

. (4)

The transformed operator preserves the same symmetries of the initial operator, e.g.,
the tensor character, as the transformation is a spin-isospin scalar. However, we have to



TABLE 1. B(E2), in e2 f m4, and relative kinetic energy expectation value, in MeV , for
selected nuclei and model spaces, using the bare and effective operators computed in the
two-body cluster approximation.

Nucleus Observable Model Space Bare operator Effective operator
6Li B(E2,1+0 → 3+0) 2h̄Ω 2.647 2.784
6Li B(E2,1+0 → 3+0) 10h̄Ω 10.221 -
6Li B(E2,2+0 → 1+0 2h̄Ω 2.183 2.269
6Li B(E2,2+0 → 1+0 10h̄Ω 4.502 -
10C B(E2,2+

1 0 → 0+0) 4h̄Ω 3.05 3.08
12C B(E2,2+

1 0 → 0+0) 4h̄Ω 4.03 4.05
4He 〈g.s.|Trel |g.s.〉 8h̄Ω 71.48 154.51

point out that the transformation is much more involved for a non-scalar observable than
for a scalar one. Indeed, because general tensor operators can couple different angular
momentum states, one has to use different transformation operators ω in Eq. (4).

Once one obtains ω , the problem is solved. However, this is a task as difficult as
solving the full A-body problem, as the exact solution is an A-body operator, regardless
of the rank of the interaction with which one starts. Therefore, one makes the cluster
approximation, in which one finds ω for the problem involving a nucleons (a < A), and
then uses this solution to compute the effective Hamiltonian and operators in the model
space via Eqs. (3) and (4). This interaction, which reproduces exactly the spectrum of
the a-body problem, is then used to compute the solution to the A-body problem. There
are two important convergence properties. Thus, keeping the model space fixed and
increasing the cluster size, one converges to the exact solution. The same convergence
to the exact solution can be also obtained by keeping the cluster size fixed and increasing
the model spaces. In principle, because of these properties one expects to observe larger
renormalization in smaller model spaces and for small cluster sizes, or, in other words,
the renormalization effects are more visible in small model spaces for a given cluster
approximation.

RESULTS AND DISCUSSION

In a recent publication [8], we have investigated the effect of the renormalization of
electromagnetic operators in realistic calculations for p-shell nuclei. Because our first
goal was a qualitative understanding of the influence of effective operators and not a
highly accurate description of the experimental data, we have used only two-body, high
precision NN interactions, leaving out the three-body forces for the time being. This
also motivates the use of rather small model spaces and of the two-body cluster approx-
imation, given that, as expected from the convergence properties of effective operators
mentioned at the end of the last section, in such conditions, larger renormalization effects
are expected.

In calculations of several nuclei, we saw very little effect of the effective operators



in the results for the B(E2), as illustrated in Table 1. One may find this somehow
surprising, as previous investigations in the framework of the NCSM [12] successfully
obtained the correct effective proton and neutron phenomenological charges, which
haunted the nuclear structure community for so long. However, the main difference is
that the calculation in Ref. [12] included up to six-body correlations in the case of 6Li,
i.e., the nucleus chosen for this investigation. Comparison of the two results already
suggests that higher-order clusters can play an important role in the renormalization of
the E2 operator.

In contrast with the E2 operator, the kinetic energy operator is well renormalized
at the two-body cluster level, as seen in Table 1. The difference can be understood in
terms of the character of the two operators. The kinetic energy is short range, while
the quadrupole is long range; at the two-body cluster level, the unitary transformation
renormalizes mainly the short-range core of the interaction, leaving unchanged the long
range part. Hence, in order to account for long-range correlations in the two-body cluster
approximation, one needs to enlarge the model space; an illustration of this approach can
be seen in Table 1, where the B(E2) value obtained in 10h̄Ω is significantly larger than
the one calculated in 2h̄Ω. Although for very light nuclei increasing the model spaces is
not a problem, the use of a large model space quickly becomes numerically intractable
for heavier systems. Because the utilization of very large model spaces is impractical, if
not impossible, for all but the lightest nuclei (A ≤ 10) it is worthwhile to develop new
methods to introduce more correlations in a smaller model space. Such methods should
also provide a better understanding of the underlying physics. Possible such methods
would include, among others,

1. performing large model-space calculations for light nuclei, and then explicitly
truncating these results into a very small model space, as done in Ref. [12] for
6Li, thereby building into the final results all the A-body correlations, and

2. calculating the effective Hamiltonian in a large model space and using its matrix
elements as input into a many-body perturbation theory calculation of a new, further
renormalized effective Hamiltonian in a much smaller model space.

Work is in progress to implement such approaches.
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